Reduction of TcO4- by sediment-associated biogenic Fe(II)
نویسندگان
چکیده
The potential for reduction of TcO4 (aq) to poorly soluble TcO2 · nH2O(s) by biogenic sediment-associated Fe(II) was investigated with three Fe(III)-oxide containing subsurface materials and the dissimilatory metal-reducing subsurface bacterium Shewanella putrefaciens CN32. Two of the subsurface materials from the U.S. Department of Energy’s Hanford and Oak Ridge sites contained significant amounts of Mn(III,IV) oxides and net bioreduction of Fe(III) to Fe(II) was not observed until essentially all of the hydroxylamine HCl-extractable Mn was reduced. In anoxic, unreduced sediment or where Mn oxide bioreduction was incomplete, exogenous biogenic TcO2 · nH2O(s) was slowly oxidized over a period of weeks. Subsurface materials that were bioreduced to varying degrees and then pasteurized to eliminate biological activity, reduced TcO4 (aq) at rates that generally increased with increasing concentrations of 0.5 N HClextractable Fe(II). Two of the sediments showed a common relationship between extractable Fe(II) concentration (in mM) and the first-order reduction rate (in h ), whereas the third demonstrated a markedly different trend. A combination of chemical extractions and Fe Mössbauer spectroscopy were used to characterize the Fe(III) and Fe(II) phases. There was little evidence of the formation of secondary Fe(II) biominerals as a result of bioreduction, suggesting that the reactive forms of Fe(II) were predominantly surface complexes of different forms. The reduction rates of Tc(VII)O4 were slowest in the sediment that contained plentiful layer silicates (illite, vermiculite, and smectite), suggesting that Fe(II) sorption complexes on these phases were least reactive toward pertechnetate. These results suggest that the in situ microbial reduction of sedimentassociated Fe(III), either naturally or via redox manipulation, may be effective at immobilizing TcO4 (aq) associated with groundwater contaminant plumes. Copyright © 2004 Elsevier Ltd
منابع مشابه
Reductive biotransformation of Fe in shaleâ•filimestonesaprolite containing Fe(III) oxides and Fe(II)/Fe(III) phyllosilicates
A <2.0-mm fraction of a mineralogically complex subsurface sediment containing goethite and Fe(II)/Fe(III) phyllosilicates was incubated with Shewanella putrefaciens (strain CN32) and lactate at circumneutral pH under anoxic conditions to investigate electron acceptor preference and the nature of the resulting biogenic Fe(II) fraction. Anthraquinone-2,6-disulfonate (AQDS), an electron shuttle, ...
متن کاملDissimilatory bacterial reduction of Al-substituted goethite in subsurface sediments
The microbiologic reduction of a 0.2 to 2.0 mm size fraction of an Atlantic coastal plain sediment (Eatontown) was investigated using a dissimilatory Fe(III)-reducing bacterium (Shewanella putrefaciens, strain CN32) to evaluate mineralogic controls on the rate and extent of Fe(III) reduction and the resulting distribution of biogenic Fe(II). Mössbauer spectroscopy and X-ray diffraction (XRD) we...
متن کاملOxidative remobilization of biogenic uranium(IV) precipitates: effects of iron(II) and pH.
The oxidative remobilization of uranium from biogenic U(IV) precipitates was investigated in bioreduced sediment suspensions in contact with atmospheric O2 with an emphasis on the influence of Fe(II) and pH on the rate and extent of U release from the solid to the aqueous phase. The sediment was collected from the U.S. Department of Energy Field Research Center (FRC) site at Oak Ridge, Tennesse...
متن کاملDirect and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria.
The dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens reduced and precipitated Tc(VII) by two mechanisms. Washed cell suspensions coupled the oxidation of hydrogen to enzymatic reduction of Tc(VII) to Tc(IV), leading to the precipitation of TcO(2) at the periphery of the cell. An indirect, Fe(II)-mediated mechanism was also identified. Acetate, although not utilized efficiently ...
متن کاملAbiotic reductive immobilization of U(VI) by biogenic mackinawite.
During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may utilize a variety of electron acceptors, including ferric iron and sulfate that could lead to the formation of various biogenic minerals in situ. Sulfides, as well as structural and adsorbed Fe(II) associated with biogenic Fe(II)-sulfide phases, can potentially catalyze abiotic U(V...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017